![]() |
||
La Integral Definida Desde su origen, la noción de integral ha respondido a la necesidad de mejorar los métodos de medición de áreas subtendidas bajo líneas y superficies curvas. La técnica de integración se desarrolló sobre todo a partir del siglo XVII, paralelamente a los avances que tuvieron lugar en las teorías sobre derivadas y en el cálculo diferencial.
La integral definida es un concepto utilizado para determinar el valor de las áreas limitadas por curvas y rectas. Dado el intervalo [a, b] en el que, para cada uno de sus puntos x, se define una función f (x) que es mayor o igual que 0 en [a, b], se llama integral definida de la función entre los puntos a y b al área de la porción del plano que está limitada por la función, el eje horizontal OX y las rectas verticales de ecuaciones x = a y x = b. La integral definida de la función entre los extremos del intervalo [a, b] se denota como: Propiedades de la integral definida La integral definida cumple las siguientes propiedades:
![]()
![]() ![]() Ilustración gráfica del concepto de integral definida. Función integral Considerando una función f continua en [a, b] y un valor x Î [a, b], es posible definir una función matemática de la forma: ![]() Donde, para no inducir a confusión, se ha modificado la notación de la variable independiente de x a t. Esta función, simbolizada habitualmente por F (x), recibe el nombre de función integral o, también, función área pues cuando f es mayor o igual que cero en [a, b], F (x) nos da el área. Interpretación geométrica de la función integral o función área. Teorema fundamental del cálculo integral La relación entre derivada e integral definida queda establecida definitivamente por medio del denominado teorema fundamental del cálculo integral, que establece que, dada una función f (x), su función integral asociada F (x) cumple necesariamente que: ![]() A partir del teorema fundamental del cálculo integral es posible definir un método para calcular la integral definida de una función f (x) en un intervalo [a, b], denominado regla de Barrow:
![]() Notación de la integral definida Notación de la integral definida. El símbolo de la integral El signo utilizado para denotar la operación de integración fue ideado por el matemático y filósofo alemán Gottfried Wilhelm Leibniz (1646-1716), quien quiso así referirse a la suma de las ordenadas diferenciales situadas bajo una curva. Por tanto, ? no es sino una “s” estilizada, inicial de la palabra suma. La integral definida de funciones con signo variable se calcula “por trozos”. Ahora bien, el área sombreada es: Henri Lebesgue La figura del matemático francés Henri Lebesgue (1875-1941) resultó fundamental para la sistematización del cálculo integral y su aplicación a las modernas teorías de las ciencias naturales y económicas.
![]()
|
![]() |